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Abstract. We present a new generating set search (GSS) approach to linearly constrained op-
timization. GSS is a class of direct search optimization methods that includes generalized pattern
search. One of our main contributions is a new condition to define the set of conforming search direc-
tions that admits several computational advantages. Next we establish a big-O relationship between
a parameter used by GSS algorithms to control the lengths of steps and a measure of stationarity
that is equivalent to the norm of the gradient of the objective in the unconstrained case. We give nu-
merical results to demonstrate that this relationship can be realized, which validates a long-standing
practice of using the step-length control parameter as a stopping criterion for generalized pattern
search. As a consequence of this relationship, we obtain convergence to a KKT point of a subsequence
of the unsuccessful iterates, even though GSS algorithms lack explicit gradient information.
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1. Introduction. We consider a class of direct search methods called generating
set search (GSS) [15] which encompasses methods such as generalized pattern search
[32, 18, 19] and certain classes of derivative-free optimization methods [21, 22, 23, 24].
The problem of interest is the linearly constrained minimization problem:

minimize f(x)
subject to Ax ≤ b.

(1.1)

Here f : Rn → R, A is an m × n matrix, and b is a vector in Rm. Both A and b are
assumed to be explicitly available. No assumption of nondegeneracy of the constraints
is made. Let Ω denote the feasible region:

Ω = { x | Ax ≤ b } .

We assume that the objective f is continuously differentiable on Ω but that the
gradient is not computationally available because no procedure exists for computing
the gradient and it cannot be approximated accurately.

1.1. An illustrative example. We illustrate an instance of a GSS method in
Figure 1.1. We consider coordinate search applied to the two-dimensional modified
Broyden tridiagonal function [4, 26], a standard test problem, with the addition of
bounds on the variables. Level curves of the function are shown in the background,
and the feasible region is the box labeled Ω. The current iterate xk is indicated by a
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Ω

(a) Initial pattern for
k = 0; k ∈ S.

Ω

(b) Move West for k = 1;
k ∈ U .

Ω

(c) Reduce step for k =
2; k ∈ S.

Ω

(d) Move North for k =
3; k ∈ U .

Ω

(e) Reduce step for k =
4; k ∈ S.

Ω

(f) Move West for k = 5;
k ∈ U .

Fig. 1.1. Coordinate search with exact penalization applied to the modified Broyden tridiagonal
function with bound constraints.

circle; this is the point with the lowest value of f found so far, also known as the best
point. The darker lines with terminal solid squares show the search directions and
trial points, respectively. Since we are using a feasible-point approach, the darker lines
with terminal crosses show the search directions for which no trial point is considered
since the point lies outside the feasible region Ω. The lighter versions given in (b)–(f)
indicate the search directions and trial points from the previous iteration.

To establish notation and give context for the discussion that follows, we give
an outline of a GSS method. Details are developed throughout the paper; complete
statements of the algorithms can be found in §5.

Let x0 ∈ Ω be the initial iterate, and let ∆0 be the initial choice for the step-
length control parameter with ∆0 > ∆tol > 0, where ∆tol serves as a measure for
termination. The search proceeds for iterations k = 0, 1, 2, . . . until ∆k < ∆tol.

The first step in each iteration is to select a set of search directions. The number
of search directions is denoted by pk and the set of search directions by

Dk = {d(1)
k , . . . , d

(pk)
k }.

The second step in each iteration is to construct feasible trial points of the form

xk + ∆̃(i)
k d

(i)
k i ∈ {1, . . . , pk}.

with ∆̃(i)
k ∈ [0,∆k] chosen to ensure feasibility. These trial points are where the

objective function may be evaluated in the search for a new best point to replace xk.
The third step is to determine whether the iteration is successful or unsuccessful

and correspondingly update x and ∆. If one of the trial point reduces the objective
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function value by an acceptable amount, then that trial point becomes the new iterate
xk+1. The step-length control parameter may either be increased or, more usually,
left unchanged so that ∆k+1 = ∆k. In this case the iteration is deemed successful and
k is assigned to the set of successful iterates denoted by S. Otherwise, none of the
trial points improves the value of the objective function, so the step ∆k is reduced,
e.g., ∆k+1 = 1

2∆k, and the next iterate is unchanged, i.e., xk+1 = xk. In this case the
iteration is deemed unsuccessful and k is assigned to the set of unsuccessful iterates
denoted by U .

1.2. Goals of this paper. A primary contribution of this paper is a new con-
dition on the set of search directions Dk that is flexible but also sufficient to ensure
desirable convergence properties of the algorithm. Key to our new results is the way
in which the classification of constraints as being nearly binding is tied to ∆k, the
step-length control parameter.

The following measure of stationarity, introduced in [5], is central to our analysis:
for x ∈ Ω,

χ(x) ≡ max
x+w∈Ω
‖w ‖≤1

−∇f(x)T w.

As discussed in [6], χ(x) is a continuous function on Ω. Furthermore, χ(x) = 0 for
x ∈ Ω if and only if x is a KKT point of the linearly constrained problem.

In Theorem 6.4, under certain assumptions, we show that at unsuccessful itera-
tions there is a big-O relationship between the step-length control parameter and the
measure of stationarity:

χ(xk) = O(∆k) for k ∈ U . (1.2)

This means that as ∆k is reduced, the upper bound on the value of the measure
of stationarity is also reduced. Relationship (1.2) is analogous to the unconstrained
minimization result (see [8, Section 3] or [15, Section 3.6]):

‖∇f(xk) ‖ = O(∆k) for k ∈ U . (1.3)

Results (1.2) and (1.3) support using the magnitude of ∆k as a test for termination.
In §7 we give numerical illustrations of relationship (1.2).

Another consequence of (1.2) is that it leads directly to a global convergence result
(Theorem 6.5) showing that a subsequence of the iterates converge to a KKT point:

lim inf
k→∞

χ(xk) = 0. (1.4)

While related results for generalized pattern search have been established previously
[18, 19, 1], (1.4) follows immediately from (1.2) once the result lim infk→∞∆k = 0
from [32] is invoked, thus further simplifying prior global convergence analyses.

1.3. Related work. The GSS methods we propose for solving linearly con-
strained problems are feasible-point methods; i.e., they require all iterates to be feasi-
ble. They also share many features with classical feasible directions methods that rely
on derivatives [2, 34, 35], especially in the way in which they handle the proximity of
the current iterate to the boundary of the feasible region.

Even though direct search methods do not have explicit recourse to derivatives,
there are direct search algorithms to solve (1.1) that are guaranteed to converge to
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KKT points; see, e.g., [25, 33, 19, 24, 15]. This earlier work has already established
(1.4). Our focus here is on establishing (1.2) and a related result regarding the
projection of the direction of steepest descent onto the polar of the cone defined by
the working set of constraints.

Proposition 7.1 in [19] also established a relationship between ∆k and a different
measure of stationarity. The quantity

q(x) ≡ PΩ (x−∇f(x))− x, (1.5)

where PΩ denotes the projection onto Ω, is a continuous function of x with the prop-
erty that q(x) = 0 for x ∈ Ω if and only if x is a KKT point. In [19, Proposition 7.1]
it is shown that

‖ q(xk) ‖ = O(
√

∆k) for k ∈ U , (1.6)

a result that is neither as satisfying nor as useful as that in (1.2).
The condition on the search directions that we introduce here differs from those

previously proposed [19, 24]. The convergence properties of GSS algorithms rely on
the presence at each iteration of a theoretically necessary set of search directions,
which we call core directions. In [19] and Algorithm 2 of [24], the core directions are
all the generators for a set of cones. There are situations where the resulting number
of search directions is quite large. Since ∆k can be reduced only at the conclusion of
an unsuccessful iteration, and each unsuccessful iteration requires the evaluation of
the function at the trial points defined by core directions, there is incentive to try and
keep the cardinality of the set of core directions small when the cost of computing
f at a feasible point is appreciable. Algorithm 1 of [24] addresses this concern. Its
core directions are the generators of a single cone. However, the only allowable search
directions are the core directions—the set of search directions cannot be augmented.

The approach we advocate here is a compromise. Our set of core directions is
smaller than in [19] and Algorithm 2 of [24], but the choice of search directions is
more flexible than Algorithm 1 of [24]. The core set need only contain generators
for a single cone, but accommodates additional search directions. As reported in [17],
the computational advantages of this compromise are appreciable in terms of reducing
the number of search directions per iteration, reducing the total number of iterations,
and reducing the total number of function evaluations.

1.4. Organization. The paper is organized as follows. In §2, we describe the
conditions on the set of core directions for GSS methods applied to problems with
linear constraints. As we saw in Figure 1.1, GSS algorithms may generate trial points
that are infeasible, so in §3 we describe how feasibility is maintained. In §4 we
discuss the globalization strategies. Formal statements of GSS algorithms for solving
linearly constrained problems are given in §5. We present two general algorithms. The
first (Algorithm 5.1), uses a sufficient decrease condition as in [22, 24]. The second
(Algorithm 5.2), uses a simple decrease condition as in [18, 19]. Results showing
the stationarity properties of these algorithms are derived in §6. In §7 we discuss
what the analysis reveals about using ∆k to test for stationarity and demonstrate
its effectiveness on two test problems. In §8, we summarize the results and their
importance. Appendix A contains a discussion of χ(x) and its use as a measure of
stationarity. Appendix B contains geometric results on cones and polyhedra.

2. Search directions. GSS methods for linearly constrained optimization need
to choose Dk, the set of search directions, at each iteration. In this section, we
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describe the conditions we place on Dk to guarantee (1.2), and thus (1.4). Since
GSS methods do not use gradient information, they cannot directly identify descent
directions. Instead, the set Dk must include enough search directions to guarantee
that at least one of them is a descent direction and, moreover, allows a sufficiently long
step within the feasible region if xk is not a KKT point. To describe the conditions
on the sets of search directions, we start in §2.1 by reviewing some standard concepts
regarding finitely generated cones. Then, in §2.2, we show how to use the constraints
Ax ≤ b to define cones that mirror the geometry of the boundary of the polyhedron Ω
near the current iterate xk. Finally, in §2.3, we detail the conditions placed on the set
Dk to ensure that, for every iteration of any GSS algorithm, there exists at least one
direction along which it is possible to take a step of sufficient length while remaining
inside Ω.

2.1. Cones and generators. A cone K is a set that is closed under nonnegative
scalar multiplication, i.e., K is a cone if x ∈ K implies αx ∈ K for all α ≥ 0. The
polar of a cone K, denoted K◦, is defined by

K◦ =
{

v | wT v ≤ 0 for all w ∈ K
}

and is itself a cone. Given a convex cone K and any vector v, there is a unique closest
point of K to v, the projection of v onto K, which we denote by vK . Given a vector
v and a convex cone K, any vector v can be written as v = vK + vK◦ and vT

KvK◦ = 0
[27, 12].

A set of vectors G generates a cone K if K is the set of all nonnegative linear
combinations of elements of G. A cone K is finitely generated if it can be generated
by a finite set of vectors. For any finite set of vectors G, we define

κ(G) = inf
v∈Rn

vK 6=0

max
d∈G

vT d

‖ vK ‖ ‖ d ‖
, where K is the cone generated by G. (2.1)

This is a generalization of the quantity given in [15, (3.10)], where G generates Rn.
Note that the value κ(G) is a property of the set G—not of the cone K.

Proposition 2.1. If G 6= {0}, then κ(G) > 0.
See Proposition 10.3 in [19] for a proof of this result.

A special case occurs if G generates Rn. In this case, a set of generators is a
positive spanning set [7]. Thus a positive spanning set is like a linear spanning set
but with the additional requirement that all the coefficients be nonnegative. One
particular choice of generating set for Rn is the set of the positive and negative unit
coordinate vectors

{e1, e2, . . . , en,−e1,−e2, . . . ,−en},

which is the set of search directions used for the illustration of compass search in
Figure 1.1.

2.2. Tangent and normal cones. Let aT
i be the ith row of the constraint

matrix A and let

Ci =
{

y | aT
i y = bi

}
denote the set where the ith constraint is binding. The set of indices for the binding
constraints at x is I(x) = { i | x ∈ Ci }. The normal cone at a point x, denoted by
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N(x), is the cone generated by the binding constraints, i.e., the cone generated by the
set { ai | i ∈ I(x) } ∪ {0}. The presence of {0} means that N(x) = {0} if there are
no binding constraints. The tangent cone, denoted by T (x), is the polar of the normal
cone. Further discussion of the tangent and polar cones in the context of optimization
can be found, for instance, in [30, 12, 13, 29].

In our case, we are not only interested in the binding constraints, but also in the
nearby constraints. Given x ∈ Ω, the indices of the ε-binding constraints are given by

I(x, ε) = { i | dist(x, Ci) ≤ ε } . (2.2)

The vectors ai for i ∈ I(x, ε) are the outward-pointing normals to the faces of the
boundary of Ω within distance ε of x. The idea of using ε-binding constraints is
identical to one sometimes used in gradient-based feasible directions methods, e.g. [2,
Section 2.5].

Given x ∈ Ω, we define the ε-normal cone N(x, ε) to be the cone generated by
the set { ai | i ∈ I(x, ε) } ∪ {0}. The presence of {0} means that N(x, ε) = {0} if
I(x, ε) = ∅. The corresponding polar cone is the ε-tangent cone T (x, ε). Observe that
if ε = 0, these are just the standard normal and tangent cones; that is, N(x, 0) = N(x)
and T (x, 0) = T (x).

Examples of ε-normal and ε-tangent cones are illustrated in Figure 2.1. The set
x + T (x, ε) approximates the feasible region near x, where “near” is with respect to
the value of ε. Note that if I(x, ε) = ∅, so that N(x, ε) = {0}, then T (x, ε) = Rn; in
other words, if the boundary is more than distance ε away, then the problem looks
unconstrained in the ε-neighborhood of x, as can be seen in the third example in
Figure 2.1. Observe that one can proceed from x along any direction in T (x, ε) for
a distance of at least ε, and remain inside the feasible region; this is formalized in
Proposition 2.2. Overall, the number of distinct ε-normal cones (and consequently
the number of distinct ε-polar cones) is finite; see Proposition 2.3.

ε
1

N(x,ε
1
)

T(x,ε
1
)Ω

x
ε
2

T(x,ε
2
)

N(x,ε
2
)

Ω

x
ε
3

T(x,ε
3
)Ω

x

Fig. 2.1. The cones N(x, ε) and T (x, ε) for the values ε1, ε2, and ε3. Note that for this example,
as ε varies from ε1 to 0, there are only the three distinct pairs of cones illustrated (N(x, ε3) = {0}).

Proposition 2.2. If x ∈ Ω, and v ∈ T (x, ε) satisfies ‖ v ‖ ≤ ε, then x + v ∈ Ω.
Proof. Let x ∈ Ω, and v ∈ T (x, ε) with ‖ v ‖ ≤ ε. Since v ∈ T (x, ε) = (N(x, ε))◦,

aT
i v ≤ 0 for all i ∈ I(x, ε). Thus, x+v satisfies all constraints with i ∈ I(x, ε) because

aT
i (x + v) = aT

i x + aT
i v ≤ b + 0 = b.

Meanwhile, if i 6∈ I(x, ε), the face Ci where the i-th constraint is binding is more than
distance ε away from x. Thus, x + v ∈ Ω.

Proposition 2.3. For all x ∈ Ω and ε > 0, there are at most 2m distinct sets
6



I(x, ε). Consequently, there are at most 2m distinct cones N(x, ε) and at most 2m

distinct cones T (x, ε).
Proof. Each I(xk, εk) is a subset of {1, . . . ,m}, of which there are exactly 2m

possible subsets, including the empty set. The remainder of the proof follows directly
from the definitions of N(x, ε) and T (x, ε).

2.3. Conditions on the search directions. We now state the conditions on
the sets of search directions for GSS for linearly constrained optimization.

At each iteration, a linearly constrained GSS method assembles Dk, the set of
search directions. We partition Dk into two subsets that play different roles in the
analysis:

Dk = Gk ∪Hk.

The set Gk is required to generate T (xk, εk) and is called the set of core directions.
The requirement that the set of search directions contain a set of generators for
T (xk, εk) (which is always Rn in the unconstrained case) is what led to the name
generating set search [15].

The (possibly empty) set Hk accommodates any remaining directions in Dk, the
presence of which may prove instrumental in efforts to accelerate the overall progress
of the search. For instance, using Hk = {ai : i ∈ I(xk, εk)} can be advantageous
computationally [17].

Our focus here is on the conditions on Gk. The set Hk accommodates additional
directions suggested by heuristics to improve the progress of the search, but has little
effect on the analysis. The generating set for T (xk, εk) contained in Gk is crucial.

Condition 1. There exists a constant κmin > 0, independent of k, such
that for every k for which T (xk, εk) 6= {0}, the set Gk generates T (xk, εk)
and satisfies κ(Gk) ≥ κmin.

Even though there are only finitely many ε-tangent cones T (x, ε), the set of possible
generators for each cone is not necessarily unique, as seen in Figure 2.2. The lower
bound κmin from Condition 1 precludes a sequence of Gk’s for which κ(Gk) → 0. Such
a situation is depicted in Figure 2.2 for

G =
{(

−1
0

)
,

(
1
0

)
,

(
−1
−η

)}
with three choices of η > 0. If −∇f(x) = (0, −1)T , neither of the first two elements
of G are descent directions. Furthermore, since

κ(G) ≤ max
d∈G

−∇f(x)T d

‖∇f(x) ‖ ‖ d ‖
=

η√
1 + η2

< η,

the remaining element in G will be an increasingly poor descent direction if η → 0. A
nonzero lower bound on κ(G), as in Condition 1, will keep the angle between v and
at least one generator bounded away from 90◦. See [15, Sections 2.2 and 3.4.1] for
further discussion.

A simple technique to ensure Condition 1 is satisfied is as follows. Let k2 > k1.
If I(xk2 , εk2) = I(xk1 , εk1), use the same generators for T (xk2 , εk2) as were used for
T (xk1 , εk1). Recall from Proposition 2.3 that there at most 2m distinct index sets
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ε

N(x,ε)

T(x,ε)

Ω

x
ε

N(x,ε)

T(x,ε)

Ω

x
ε

N(x,ε)

T(x,ε)

Ω

x

Fig. 2.2. Condition 1 is needed to avoid a sequence of Gk’s for which κ(Gk) → 0.

I(x, ε) and their corresponding ε-tangent cones T (x, ε). It then follows that there are
at most 2m distinct sets G if the same set of generators is always used to generate
a particular ε-tangent cone. Since by Proposition 2.1 each G 6= {0} has a strictly
positive value for κ(G), and since this technique ensures there are only finitely many
Gk’s, we can set κmin = min{κ(Gk) : T (xk, εk) 6= {0}}. Thus, Condition 1 is satisfied.

We have not yet indicated how to compute the generators for a given T (xk, εk)
so as to assemble Gk. If the working set { ai | i ∈ I(xk, εk) } is linearly indepen-
dent, then it is straightforward to calculate the generators of T (xk, εk) as described in
[25, 19, 17]. If the set { ai | i ∈ I(xk, εk) } is linearly dependent (e.g., in the degen-
erate case), then it also is possible to calculate the generators as described in [17]. In
the latter case, the experience reported in [17] suggests that the worst-case computa-
tional complexity bounds do not indicate expected performance. For example, for one
problem illustrated in [17], the worst-case estimate indicates that more than 4× 1017

vectors need to be considered when, in fact, only one vector was needed and this one
vector was easily identified in less than one-seventh of a second on a conventional
workstation using Fukuda’s cddlib package [9].

Finally, all the core directions must be uniformly bounded; see Condition 2.

Condition 2. There exist βmax ≥ βmin > 0, independent of k, such that for
for every k for which T (xk, εk) 6= {0}, the following holds:

βmin ≤ ‖d‖ ≤ βmax for all d ∈ Gk.

Condition 2 is easy to satisfy, say, by normalizing all search directions so that βmin =
βmax = 1. However, there may be situations where it makes sense to allow the
directions in Gk to accommodate scaling information. This poses no difficulties for
the analysis, so long as there are lower and upper bounds, independent of k, on the
norm of each d ∈ Gk.

3. Choosing the step lengths. Given a set of search directions, the length of
the step along each direction is dictated by the step-length control parameter ∆k. In
the unconstrained case, the set of trial points at iteration k would be{

xk + ∆kd
(i)
k | i = 1, . . . , pk

}
,

where

Dk =
{

d
(1)
k , d

(2)
k , . . . , d

(pk)
k

}
.
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In the constrained case, however, some of those trial points may be infeasible. Thus,
the trial points are instead defined by{

xk + ∆̃(i)
k d

(i)
k | i = 1, . . . , pk

}
,

where

∆̃(i)
k ∈ [0,∆k]

is chosen so that xk + ∆̃(i)
k d

(i)
k ∈ Ω. The main requirement on choosing ∆̃(i)

k is that a
full step is used if possible, as formally stated in the following condition.

Condition 3. If xk + ∆kd
(i)
k ∈ Ω, then ∆̃(i)

k = ∆k.

The simplest formula for choosing ∆̃(i)
k ∈ [0,∆k] that satisfies Condition 3 is

∆̃(i)
k =

{
∆k if xk + ∆kd

(i)
k ∈ Ω

0 otherwise.
(3.1)

This corresponds to a form of exact penalization (see [15, Section 8.1]) since the effect
of (3.1) is to reject (by setting ∆̃(i)

k = 0) any step ∆kd
(i)
k that would generate an

infeasible trial point. Since the constraints are assumed to be explicit (i.e., A and b
are known), verifying the feasibility of a trial point is straightforward. This strategy
is illustrated in Figure 3.1.

∆
k
d

k
(4)

∆
k
d

k
(2)

∆
k
d

k
(1)

∆
k
d

k
(3)

Ω

x
k

∆(4)
k

d
k
(4)~

∆(2)
k

d
k
(2)~

Ω

x
k

Fig. 3.1. The step-length control parameter ∆k may lead to infeasible trial points. The effect
of using (3.1) is that infeasible points simply are not considered as candidates to replace xk.

More sophisticated strategies can be employed for choosing ∆̃(i)
k when xk +∆kd

(i)
k

is infeasible. Since alternatives for choosing ∆̃(i)
k depend on the globalization strategy,

we defer the discussion of further examples to §4.

4. Globalization. Globalization of GSS refers to the conditions that are en-
forced to ensure that

lim inf
k→∞

∆k = 0. (4.1)

These conditions affect the decision of whether or not to accept a trial point as the
next iterate and how to update ∆k. Globalization strategies for GSS are discussed
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in detail in [15, Section 3.7]. Here we review those features that are relevant to our
analysis of algorithms for the linearly constrained case.

In any GSS algorithm, xk is always the best feasible point discovered thus far;
i.e., f(xk) ≤ f(xj) for all j ≤ k. However, different conditions are imposed on how
much better a trial point must be to be accepted as the next iterate.

In general, for an iteration to be considered successful we require that

xk + ∆̃kdk ∈ Ω and f(xk + ∆̃kdk) < f(xk)− ρ(∆k)
for some dk ∈ Dk and ∆̃k ∈ [0,∆k].

(4.2)

The function ρ(·) is called the forcing function and must satisfy Condition 4:

Condition 4. (General requirements on the forcing function)
1. The function ρ(·) is a nonnegative continuous function on [0,+∞).
2. The function ρ(·) is o(t) as t ↓ 0; i.e., lim

t↓0
ρ(t) / t = 0.

3. The function ρ(·) is nondecreasing; i.e., ρ(t1) ≤ ρ(t2) if t1 ≤ t2.

Both ρ(∆) ≡ 0 and ρ(∆) = α∆p, where α > 0 and p > 1, satisfy Condition 4. The
first choice also requires globalization via a rational lattice, which is discussed in §4.2.
The second choice can be used with globalization via a sufficient decrease condition,
which is discussed in §4.1.

In the case of a successful iteration (i.e., one that satisfies (4.2)), the next iterate
is defined by

xk+1 = xk + ∆̃kdk for k ∈ S.

(Recall from §1.1 that the set of indices of all successful iterations is denoted by S.)
In addition, ∆k is updated according to

∆k+1 = φk∆k, φk ≥ 1 for k ∈ S.

The parameter φk is called the expansion parameter.
For the kth iteration to be unsuccessful, it must be the case that

xk + ∆kd 6∈ Ω or f(xk + ∆kd) ≥ f(xk)− ρ(∆k) for every d ∈ Gk. (4.3)

When the iteration is unsuccessful, the best point is unchanged:

xk+1 = xk for k ∈ U .

(Recall from §1.1 that the set of indices of all unsuccessful iterations is denoted by
U .) In addition, the step-length control parameter is reduced:

∆k+1 = θk∆k, θk ∈ (0, 1), for k ∈ U .

The parameter θk is called the contraction parameter.
There are intimate connections between choosing the φk or θk in the update for

∆k and guaranteeing that (4.1) holds. Further requirements depend on the particular
choice of globalization strategy, and so are given in §4.1 and §4.2.
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4.1. Globalization via a sufficient decrease condition. In the context of
gradient-based nonlinear programming algorithms, the enforcement of a sufficient
decrease condition on the step is well-established (e.g., [10, 28, 29], or see the discussion
in [15, Section 2.2]). In the context of gradient-based methods, enforcing a sufficient
decrease condition ties the choice of the step-length control parameter to the expected
decrease, as estimated by the initial rate of decrease −∇f(xk)T dk. In the context of
GSS methods, the underlying assumption is that the value of ∇f(xk) is unavailable—
which means that the types of sufficient decrease conditions often used with gradient-
based methods cannot be enforced. However, in [11] an alternative that uses the
step-length control parameter, rather than ∇f(xk), was introduced and analyzed in
the context of linesearch methods for unconstrained minimization. In [21, 22, 23, 24],
this basic concept then was extended to both unconstrained and constrained versions
of what we here refer to as GSS methods. We now review the essential features of
this approach.

Within the context of GSS methods for linearly constrained optimization, a suffi-
cient decrease globalization strategy requires the following of the forcing function ρ(·)
and the choice of the contraction parameter θk.

Condition 5. (The forcing function for sufficient decrease)
The forcing function ρ(·) is such that ρ(t) > 0 for t > 0.

Condition 6. (Contracting ∆k for sufficient decrease)
A constant θmax < 1 exists such that θk ≤ θmax for all k.

Full details are discussed in [15, Section 3.7.1], but we include a few salient obser-
vations here. The requirements of Condition 5 are easily satisfied by choosing, say,
ρ(∆) = 10−4∆2, while the requirements of Condition 6 are easily satisfied by choos-
ing, say, θk = 1

2 for all k. The upper bound on the contraction factor θk ensures a
predictable fraction of reduction on ∆k at the conclusion of an unsuccessful iteration.

If a sufficient decrease condition is being employed, then we can use an alternative
to the exact penalization strategy, given in (3.1), for choosing ∆̃(i)

k when xk +∆kd
(i)
k 6∈

Ω: simply find the step to the nearest constraint from xk along d
(i)
k . This is a well

known technique in nonlinear programming (see, for instance, [10, Section 5.2] or [28,
Section 15.4]). In other words, compute ∆̃(i)

k as the maximum nonnegative feasible
step along d

(i)
k . This option is illustrated in Figure 4.1.

4.2. Globalization via a rational lattice. Traditionally, direct search meth-
ods have relied on simple, as opposed to sufficient, decrease when accepting a step [32].
In other words, it is enough for the step ∆̃(i)

k d
(i)
k to satisfy f(xk + ∆̃(i)

k d
(i)
k ) < f(xk).

The trade-off is that when the condition for accepting a step is relaxed to admit sim-
ple decrease, further restrictions are required on the types of steps that are allowed.
These restrictions are detailed in Conditions 7, 8, and 9.

11
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Fig. 4.1. Observe in the second illustration that globalization via a sufficient decrease condition
makes it possible to avoid infeasible trial points by simply stopping at the boundary of Ω.

Condition 7. (Choosing the directions for the rational lattice)
Let G = ∪∞k=0 Gk.
1. The set G is finite and so can be written as G = {g(1), . . . , g(p)}.
2. Every vector g ∈ G is of the form g ∈ Zn, where Z is the set of integers.
3. Every vector h ∈ Hk is of the form h ∈ Zn.

Condition 8. (Expanding or contracting ∆k for the rational lattice)
1. The scalar τ is a fixed rational number strictly greater than 1.
2. For all k ∈ S, φk is of the form φk = τ `k where `k ∈ {0, . . . , L}, L ≥ 0.
3. For all k ∈ U , θk is of the form θk = τmk where mk ∈ {M, . . . ,−1},

M ≤ −1.

Condition 9. (Choosing the steps for the rational lattice) ∆̃(i)
k satisfies

either ∆̃(i)
k = 0 or ∆̃(i)

k = τ m̃
(i)
k ∆k, where m̃

(i)
k ∈ {M̃, . . . , 0}, M̃ ≤ 0.

While the list of requirements in Conditions 7, 8, and 9 looks onerous, they can be
satisfied in a straightforward fashion. A discussion of the reasons for these conditions
can be found in [19, Sections 3.4, 4, and 5]. (A detailed discussion of the rational
lattice globalization strategy for the unconstrained case can be found in [15, Section
3.7.2].) Here we make only a few pertinent observations.

First, a critical consequence of Conditions 7 and 8 is that when these two con-
ditions are enforced, along with the exact penalization strategy in (3.1), Theorem
5.1 in [19] ensures that all iterates lie on a rational lattice. This fact plays a crucial
role in guaranteeing (4.1) when only simple decrease is enforced. Condition 9 is a
straightforward extension that preserves the fact that all the iterates lie on a rational
lattice while relaxing the exact penalization strategy in (3.1) (an example is shown in
Figure 4.2).

Obtaining a finite G to satisfy part one of Condition 7 can be done by following
the procedure outlined in §2.3 (i.e., if I(xk2 , εk2) = I(xk1 , εk1) for k2 > k1, then use
the same generators for T (xk2 , εk2) as were used for T (xk1 , εk1)). To satisfy part 2, a
standard assumption in the context of simple decrease is that the linear constraints

12



are rational, i.e., A ∈ Qm×n, where Q denotes the set of rational numbers. By clearing
denominators, it is then possible—with some care—to obtain a set of integral vectors
to generate all possible ε-tangent cones; see [19, Section 8] for further discussion. Part
3 is enforced directly.

In Condition 8, the usual choice of τ is 2. The parameter φk typically is chosen to
be 1 so that `k = 0 for all k, satisfying the requirement placed on φk in Condition 8.
Usually θk is chosen to be 1

2 so that mk = −1 for all k, satisfying the requirement
placed on θk in Condition 8. The fact that τ−1 is the largest possible choice of θk

obviates the need to explicitly bound θk from above, as was required in Condition 6
for sufficient decrease.

Condition 9 says that it is possible to choose a partial step along a given direction
so long as the trial point remains on a rational lattice. One strategy is illustrated
in Figure 4.2. Starting with the situation illustrated on the left, along direction
d(1), ∆̃(1)

k = 0.5∆k yields the feasible trial step ∆̃(1)
k d(1) while along direction d(3),

∆̃(3)
k = 0.25∆k yields the feasible trial step ∆̃(3)

k d(3), as illustrated on the right. These
choices for ∆̃(1)

k and ∆̃(3)
k correspond to choosing m

(1)
k = −1 and m

(3)
k = −2, with

τ = 2 and M̃ = −2.

∆
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Fig. 4.2. Globalization via a rational lattice means that the trial points lie on the rational lattice
that exists as a consequence of Conditions 7–9. For this example note that while the two reduced
steps are near the boundary, the requirement that they remain on the rational lattice means that
they may not be on the boundary.

The general strategy is to find the largest ∆̃(i)
k (by finding the largest m

(i)
k ) such

that xk + ∆̃(i)
k d

(i)
k ∈ Ω while satisfying Condition 9. To do so, either reduce ∆k by a

factor of 1/τ until

xk + τm
(i)
k ∆kd

(i)
k ∈ Ω with m

(i)
k ≥ M̃ (4.4)

or set ∆̃(i)
k = 0 if it is not possible to satisfy (4.4) (for instance, when xk is on the

boundary of the feasible region and any step along d
(i)
k would be infeasible).

5. GSS algorithms for linearly constrained problems. We now formally
state two GSS algorithms for solving linearly constrained optimization problems. The
fundamental requirement for both algorithms is that at every iteration k, the set
of search directions Dk must include a set of generators Gk for the ε-normal cone
T (xk, εk)—hence the name generating set search methods. The primary requirements
on the GSS methods presented here are that they satisfy Conditions 1, 2, 3, and 4.
The differences in the two versions given depend on the type of globalization that is
used: sufficient decrease in Figure 5.1 versus simple decrease in Figure 5.2.
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Algorithm 5.1 (Linearly constrained GSS using a sufficient
decrease globalization strategy)

Initialization.

Let x0 ∈ Ω be the initial guess.

Let ∆tol > 0 be the tolerance used to test for convergence.

Let ∆0 > ∆tol be the initial value of the step-length control parameter.

Let εmax > βmax∆tol be the maximum distance used to identify nearby
constraints (εmax = +∞ is permissible).

Let ρ(·) be a forcing function satisfying Conditions 4 and 5.

Algorithm. For each iteration k = 0, 1, 2, . . .

Step 1. Let εk = min{εmax, βmax∆k}. Choose a set of search directions
Dk = Gk ∪Hk satisfying Conditions 1 and 2.

Step 2. If there exists dk ∈ Dk and a corresponding ∆̃k ∈ [0,∆k] satisfying
Condition 3 such that xk + ∆̃kdk ∈ Ω and

f(xk + ∆̃kdk) < f(xk)−ρ(∆k),

then:

– Set xk+1 = xk + ∆̃kdk.

– Set ∆k+1 = φk∆k for any choice of φk ≥ 1.

Step 3. Otherwise, for every d ∈ Gk, either xk + ∆kd 6∈ Ω or

f(xk + ∆kd) ≥ f(xk)−ρ(∆k).

In this case:

– Set xk+1 = xk (no change).

– Set ∆k+1 = θk∆k for some choice θk ∈ (0, 1)
satisfying Condition 6.

If ∆k+1 < ∆tol, then terminate.

Fig. 5.1. Linearly constrained GSS using a sufficient decrease globalization strategy.

New in the statements of Algorithms 5.1 and 5.2, and to the analysis that follows,
is the way in which εk is defined, which has bearing on the construction of the critical
set Gk ⊆ Dk. Here we set εk = min{εmax, βmax∆k}. This selection of εk differs from
that used in either [19] or [24]. Specifically, in [19] and Algorithm 2 of [24]—as well
as earlier in [25], in a slightly restricted form—Gk is required to contain generators
for T (xk, ε) for all ε in the interval [0, εmax], with εmax > 0. This means that Gk may
need to contain generators for multiple cones rather than a single cone. Since ∆k can
be reduced only at the conclusion of an unsuccessful iteration, and an unsuccessful
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Algorithm 5.2 (Linearly constrained GSS using a rational
lattice globalization strategy)

Initialization.

Let x0 ∈ Ω be the initial guess.

Let ∆tol > 0 be the tolerance used to test for convergence.

Let ∆0 > ∆tol be the initial value of the step-length control parameter.

Let εmax > βmax∆tol be the maximum distance used to identify nearby
constraints (εmax = +∞ is permissible).

Algorithm. For each iteration k = 0, 1, 2, . . .

Step 1. Let εk = min{εmax, βmax∆k}. Choose a set of search directions
Dk = Gk ∪Hk satisfying Conditions 1, 2, and 7.

Step 2. If there exists dk ∈ Dk and a corresponding ∆̃k ∈ [0,∆k] satisfying
Conditions 3 and 9 such that xk + ∆̃kdk ∈ Ω and

f(xk + ∆̃kdk) < f(xk),

then:

– Set xk+1 = xk + ∆̃kdk.

– Set ∆k+1 = φk∆k for a choice of φk ≥ 1
satisfying Condition 8.

Step 3. Otherwise, for every d ∈ Gk, either xk + ∆kd 6∈ Ω or

f(xk + ∆kd) ≥ f(xk).

In this case:

– Set xk+1 = xk (no change).

– Set ∆k+1 = θk∆k for some choice θk ∈ (0, 1)
satisfying Condition 8.

If ∆k+1 < ∆tol, then terminate.

Fig. 5.2. Linearly constrained GSS using a rational lattice globalization strategy.

iteration requires the verification of (4.3), there is practical incentive to try and keep
the cardinality of Gk manageable when the cost of computing f(x) for x ∈ Ω is
appreciable. Thus, Algorithm 1 in [24] first introduced the potential for a smaller set
of search directions: the set of search directions must exactly generate T (xk, εk)—and
only T (xk, εk). Using our notation, this means that Hk = ∅ for all k. Furthermore,
for Algorithm 1 in [24], εk is simply a parameter decreased at unsuccessful iterations
as opposed to the particular choice of εk given here.

Our requirement that the search directions include generators for T (xk, εk), with
εk = min{εmax, βmax∆k}, is a compromise. On the one hand, it may significantly
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decrease the number of directions in Gk over that needed when Gk is required to
contain generators for T (xk, ε) for all ε in the interval [0, εmax]. On the other hand, it
allows Hk 6= ∅—the set of search directions can be augmented in an effort to accelerate
the search—without adversely affecting the convergence guarantees for the algorithm.

Yoking the value of εk to the value of ∆k has geometrical motivations. Once ∆k

is small enough, so that εk = βmax∆k, full steps along directions in Gk will be feasible,
as Figure 2.1 demonstrates.

There is an intuitive practical appeal to allowing—while not requiring—Dk to
include more search directions. Note that if T (xk, εk) 6= {0}, then the directions
in Gk will move the search along directions that are in some sense “parallel” (the
situation is more complicated for n > 2) to the faces of the polyhedron that have
been identified by the working set. This is best seen in the illustration on the left in
Figure 2.1. Intuitively, it makes sense to also allow the search to move toward the
faces of the polyhedron that have been identified by the working set—particularly
when the solution lies on the boundary of the feasible region. Such intuition is borne
out by the numerical results reported in [17].

Before proceeding, we note a technical difference between the presentation of the
algorithms in Figures 5.1 and 5.2 and what is assumed for the analysis in §6. In
practice, GSS algorithms terminate when the step-length control parameter ∆k falls
below a given threshold ∆tol > 0. Because this is important to any implementation,
we have included it in the statement of the algorithm. In Theorems 6.3, 6.4, and 6.5,
however, we assume that the iterations continue ad infinitum (i.e., in the context of
the analysis, the reader should assume ∆tol = 0).

5.1. GSS using a sufficient decrease condition. A linearly constrained GSS
algorithm based on a sufficient decrease globalization strategy is presented in Fig-
ure 5.1. Using a sufficient decrease globalization strategy, as outlined in §4.1, requires
that we enforce two particular conditions. Condition 5 ensures that ρ(∆k) = 0 only
when ∆k = 0. Condition 6 ensures that there is sufficient reduction on ∆k at unsuc-
cessful iterations.

The only assumption on f necessary to show that some subsequence of {∆k}
converges to zero is that f be bounded below in the feasible region.

Theorem 5.1 (Theorem 3.4 of [15]). Suppose f is bounded below on Ω. Then
for a linearly constrained GSS method using a sufficient decrease globalization strategy
satisfying Conditions 4, 5, and 6 (as outlined in Figure 5.1), lim infk→∞∆k = 0.

5.2. GSS using a rational lattice. A linearly constrained GSS algorithm
based on a rational lattice globalization strategy is presented in Figure 5.2. The
choice ρ(·) ≡ 0 is standard for the rational lattice globalization strategy, which means
only simple decrease, i.e., f(xk + ∆̃kdk) < f(xk), is required. We note, however, that
a sufficient decrease condition may be employed in conjunction with a rational lattice
globalization strategy; see [15, Section 3.7.2]. The choice ρ(·) ≡ 0 also means that
Condition 4 is satisfied automatically. The trade-off for using simple decrease is that
additional conditions must be imposed on the choice of admissible Dk (Condition 7),
φk and θk (Condition 8), and ∆̃k (Condition 9).

Using a rational lattice globalization strategy, to show that some subsequence of
the step-length control parameters goes to zero, the only assumption placed on f is
that the set F = { x ∈ Ω | f(x) ≤ f(x0) } be bounded. This is a stronger condition
on f than is needed when using a sufficient decrease globalization strategy, where all
that is required is that f be bounded below. The analysis for the rational lattice
globalization strategy requires the sequence {xk} to remain in a bounded set so as
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to ensure that there is a finite number of lattice points to consider. We could adopt
this weaker assumption, though it is not clear how it would be enforced in practice.
Instead, assuming that F is bounded guarantees this requirement.

Theorem 5.2 (Theorem 6.5 of [19]). Assume that F = { x ∈ Ω | f(x) ≤ f(x0) }
is bounded and that A ∈ Qm×n, where Q denotes the set of rational numbers. Then
for a linearly constrained GSS method using a rational lattice globalization strategy
satisfying Conditions 4, 7, 8, and 9 (as outlined in Figure 5.2), lim infk→∞∆k = 0.

6. Stationarity results. At unsuccessful iterations of the linearly constrained
GSS methods outlined in Figures 5.1 and 5.2, we can bound the measure of stationarity
χ(xk) in terms of ∆k. To do so, we make the following assumptions.

Assumption 6.1. The set F = { x ∈ Ω | f(x) ≤ f(x0) } is bounded.

Assumption 6.2. The gradient of f is Lipschitz continuous with constant
M on Ω.

If both Assumption 6.1 and Assumption 6.2 hold, then there exists γ > 0 such that
for all x ∈ F ,

‖∇f(x) ‖ < γ. (6.1)

We then have the following results for the algorithms in Figures 5.1 and 5.2. Recall
from §2.1 that given a convex cone K and any vector v, we denote the projection of
v onto K by vK .

Theorem 6.3. Suppose that Assumption 6.2 holds. Consider the linearly con-
strained GSS algorithms given in Figures 5.1 and 5.2, both of which satisfy Conditions
1, 2, and 3. If k ∈ U and εk satisfies εk = βmax∆k, then

‖ [−∇f(xk)]T (xk,εk) ‖ ≤
1

κmin

(
M∆kβmax +

ρ(∆k)
∆kβmin

)
. (6.2)

Here, κmin is from Condition 1, M is from Assumption 6.2, and βmax and βmin are
from Condition 2.

Proof. Clearly, we need only consider the case when [−∇f(xk)]T (xk,εk) 6= 0. Con-
dition 1 guarantees a set Gk that generates T (xk, εk). By (2.1) (with K = T (xk, εk)
and v = −∇f(xk)) there exists some d̂ ∈ Gk such that

κ(Gk) ‖ [−∇f(xk)]T (xk,εk) ‖ ‖ d̂ ‖ ≤ −∇f(xk)T d̂. (6.3)

Condition 3 and the fact that iteration k is unsuccessful tell us that

f(xk + ∆kd) ≥ f(xk)− ρ(∆k) for all d ∈ Gk for which xk + ∆kd ∈ Ω.

Condition 2 ensures that for all d ∈ Gk, ‖∆kd ‖ ≤ ∆kβmax and, by assumption,
∆kβmax = εk, so we have ‖∆kd ‖ ≤ εk for all d ∈ Gk. Proposition 2.2 then assures us
that xk + ∆kd ∈ Ω for all d ∈ Gk. Thus,

f(xk + ∆kd)− f(xk) + ρ(∆k) ≥ 0 for all d ∈ Gk. (6.4)
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Meanwhile, since the gradient of f is assumed to be continuous (Assumption 6.2),
we can apply the mean value theorem to obtain, for some αk ∈ (0, 1),

f(xk + ∆kd)− f(xk) = ∆k∇f(xk + αk∆kd)T d for all d ∈ Gk.

Putting this together with (6.4),

0 ≤ ∆k∇f(xk + αk∆kd)T d + ρ(∆k) for all d ∈ Gk.

Dividing through by ∆k and subtracting ∇f(xk)T d from both sides yields

−∇f(xk)T d ≤ (∇f(xk + αk∆kd)−∇f(xk))T
d + ρ(∆k)/∆k for all d ∈ Gk.

Since ∇f(x) is Lipschitz continuous (Assumption 6.2) and 0 < αk < 1, we obtain

−∇f(xk)T d ≤ M∆k‖ d ‖2 + ρ(∆k)/∆k for all d ∈ Gk. (6.5)

Since (6.5) holds for all d ∈ Gk, (6.3) tells us that for some d̂ ∈ Gk,

κ(Gk) ‖ [−∇f(xk)]T (xk,εk) ‖ ≤ M∆k‖ d̂ ‖+
ρ(∆k)

∆k ‖ d̂ ‖
.

Using the bounds on ‖ d̂ ‖ in Condition 2,

‖ [−∇f(xk)]T (xk,εk) ‖ ≤
1

κ(Gk)

(
M∆kβmax +

ρ(∆k)
∆kβmin

)
.

The theorem then follows from the fact that κ(Gk) ≥ κmin (Condition 1).
Theorem 6.4 relates the measure of stationarity χ(xk) to the step-length control

parameter ∆k. Before we proceed, we define the following constant (recall that κ(·)
is defined in (2.1)):

νmin = min
{
κ(A) : A = ∪i∈I(x,ε){ai}, x ∈ Ω, ε ≥ 0, I(x, ε) 6= ∅

}
> 0. (6.6)

We know that νmin > 0 because there are no more than 2m possibilities for A.
Theorem 6.4. Suppose that Assumptions 6.1 and 6.2 hold. Consider the lin-

early constrained GSS algorithms given in Figures 5.1 and 5.2, both of which satisfy
Conditions 1, 2, and 3. If k ∈ U and εk = βmax∆k, then

χ(xk) ≤
(

M

κmin
+

γ

νmin

)
∆k βmax +

1
κmin βmin

ρ(∆k)
∆k

. (6.7)

Here, κmin is from Condition 1, νmin is from (6.6), M is from Assumption 6.2, γ is
from (6.1), and βmax and βmin are from Condition 2.

Proof. Since εk = ∆kβmax, Proposition B.2 tells us that

χ(xk) ≤ ‖ [−∇f(xk)]T (xk,εk) ‖+
∆kβmax

νmin
‖ [−∇f(xk)]N(xk,εk) ‖.

Furthermore, the bound on ‖ [−∇f(xk)]T (xk,εk) ‖ from Theorem 6.3 holds. The pro-
jection onto convex sets is contractive, so ‖ [−∇f(xk)]N(xk,εk) ‖ ≤ ‖∇f(xk) ‖. Under
Assumptions 6.1 and 6.2, (6.1) holds, so ‖ [−∇f(xk)]N(xk,εk) ‖ ≤ γ. The result follows.
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If we choose either ρ(∆) ≡ 0 or ρ(∆) = α∆p with α > 0 and p ≥ 2, then we obtain
an estimate of the form χ(xk) = O(∆k).

The constants M , γ, and νmin in (6.7) are properties of the linearly constrained
optimization problem. The remaining quantities—the bounds on the lengths of the
search directions βmin and βmax, as well as κmin—are under the control of the algo-
rithm.

Before continuing, we observe that the Lipschitz assumption (Assumption 6.2)
can be relaxed. A similar bound can be obtained assuming only continuous differ-
entiability of f . Let ω denote the following modulus of continuity of ∇f(x): given
x ∈ Ω and r > 0,

ω(x, r) = max { ‖∇f(y)−∇f(x) ‖ | y ∈ Ω, ‖ y − x ‖ ≤ r } .

Then the proof of Theorem 6.4 yields the bound

χ(xk) ≤ 1
κmin

ω(xk,∆kβmax) +
γ

νmin
∆k βmax +

1
κmin βmin

ρ(∆k)
∆k

.

Returning to Theorem 6.4, if we recall from Theorems 5.1 and 5.2 that the step-
length control parameter ∆k is manipulated explicitly by GSS methods in a way that
ensures lim infk→∞∆k = 0, then an immediate corollary is the following first-order
convergence result.

Theorem 6.5. Suppose that Assumptions 6.1 and 6.2 hold. Consider either
(i) the linearly constrained GSS algorithm in Figure 5.1, which satisfies Condi-

tions 1, 2, 3, 4, 5, and 6, or
(ii) the linearly constrained GSS algorithm in Figure 5.2, which satisfies Condi-

tions 1, 2, 3, 4, 7, 8, and 9, with the additional assumption that A is rational.
For both algorithms we have lim inf

k→0
χ(xk) = 0.

7. Using ∆k to terminate GSS methods after unsuccessful iterations.
We now present some numerical illustrations of the practical implications of Theo-
rem 6.4. We show that ∆k can be used as a reasonable measure of stationarity when
implementing GSS methods to solve linearly constrained minimization problems. The
results in §6 serve as a justification for terminating the search when ∆k < ∆tol.

To demonstrate that ∆k is a reasonable measure of stationarity, we show the fol-
lowing results from experiments using an implementation of a GSS method for solving
linearly constrained optimization problems (a thorough discussion of the implemen-
tation, as well as further numerical results, can be found in [17]).

The first test problem is the following quadratic program (QP) for n = 8:

minimize f(x) =
∑n

j=1 j2x2
j

subject to 0 ≤ x ≤ 1∑n
j=1 xj ≥ 1,

(7.1)

where xj is the jth component of the vector x. The last constraint is binding at the
solution. The second test problem is posed on a pyramid in R3:

minimize f(x) =
∑3

j=1[(4− j)2(xj − cj)2 − xj ]
subject to x3 ≥ 0

x1 + x2 + x3 ≤ 1
x1 − x2 + x3 ≤ 1

−x1 + x2 + x3 ≤ 1
−x1 − x2 + x3 ≤ 1,

(7.2)
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with c = (0.01, 0.01, 0.98)T . Again, xj and cj are the jth components of the vectors x
and j, respectively. The solution is at c, which is near the apex of the pyramid. The
algorithm actually visits the apex, which is a degenerate vertex insofar as there are
four constraints in three variables that meet there.

These two problems were solved using the implementation of Algorithm 5.1 re-
ported in [17]. The forcing function was ρ(∆) = 10−4∆2. The set of search directions
Dk contained both the set Gk, the generators for the ε-tangent cone T (xk, εk), as well
as the setHk, which contained the nonzero generators for the ε-normal cone N(xk, εk).
All search directions were normalized, so βmin = βmax = 1. For these choices, Theo-
rem 6.4 says that χ(xk) = O(∆k) at unsuccessful iterations when ∆k ≤ εmax.

We used θk = 1
2 and φk = 1 for all k. After any unsuccessful iteration, we

recorded the value of ∆k and computed the value of χ(xk). These values are reported
in Table 7.1 for unsuccessful iterations with εk = ∆kβmax.

(a) The QP in (7.1)

∆k χ(xk)
0.100000000000 0.762038045731
0.050000000000 0.719781449029
0.025000000000 0.683858024464
0.012500000000 0.522963684221
0.006250000000 0.147769116216
0.003125000000 0.009094010555
0.001562500000 0.009042346694
0.000781250000 0.005424114678
0.000390625000 0.002291442563
0.000195312500 0.000803137090
0.000097656250 0.000616656194
0.000048828125 0.000583197890
0.000024414063 0.000134935864
0.000012207031 0.000214535279
0.000006103516 0.000122058457
0.000003051758 0.000033834262
0.000001525879 0.000014798430
0.000000762939 0.000002976275
0.000000381470 0.000003506102
0.000000190735 0.000001047463

(b) The QP in (7.2)

∆k χ(xk)
0.100000000000 0.009296268053
0.050000000000 0.009296268053
0.025000000000 0.068321041838
0.012500000000 0.001889009252
0.006250000000 0.000193017831
0.003125000000 0.000193017831
0.001562500000 0.003786874320
0.000781250000 0.003080612089
0.000390625000 0.000016499610
0.000195312500 0.000016499610
0.000097656250 0.000004481178
0.000048828125 0.000004481178
0.000024414063 0.000001550420
0.000012207031 0.000007616742
0.000006103516 0.000007616742
0.000003051758 0.000001501552
0.000001525879 0.000000807763
0.000000762939 0.000000008203
0.000000381470 0.000000008203
0.000000190735 0.000000008203

Table 7.1
GSS runs showing decrease in ∆k versus the value of χ(xk) at unsuccessful iterations.

The point of the results reported in Table 7.1 is not to demand close scrutiny
of each entry but rather to demonstrate the trend in the quantities measured. We
clearly see the linear relationship between ∆k and χ(xk) that Theorem 6.4 tells us to
expect. These results are consistent with findings for the unconstrained case [8] as
well as with a long-standing recommendation for using ∆k as a stopping criterion for
direct search methods (see [14, 3, 31]).

One practical benefit of using ∆k as a measure of stationarity is that it is already
present in GSS algorithms; no additional computation is required.

We close with the observation that the effectiveness of ∆k as a measure of station-
arity clearly depends on the value of the constants in the bound in (6.7). For instance,
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if f is highly nonlinear, so that the Lipschitz constant M is large, then using ∆k to
estimate χ(xk) might be misleading. While GSS methods cannot control M , γ, or
νmin, which depend on the linearly constrained optimization problem, a careful imple-
mentation of GSS methods for solving linearly constrained optimization problems can
control the remaining constants in (6.7). Thus a careful implementation can ensure
that ∆k is a useful measure of stationarity except when f is highly nonlinear (i.e., M
is large with respect to ‖∇f ‖) or A is ill-conditioned.

8. Conclusions. The results we have presented are useful in several ways. First,
we present a new prescription for how the search directions should conform to the
boundary near an iterate xk. Theorem 6.3 and Theorem 6.4 bring out many of the
elements common to the approaches described in [18, 19] and [23, 24]. Although
the globalization approaches that ensure lim infk→∞∆k = 0 differ, the same analysis
shows that for both classes of algorithms,

χ(xk) = O(∆k).

This result does not depend on the method of globalization.
Second, the results presented here give theoretical support for terminating GSS

methods for linearly constrained optimization when ∆k falls below some tolerance.
Under the assumptions of Theorem 6.4, at the subsequence of unsuccessful iterations
(k ∈ U) we have χ(xk) = O(∆k) as ∆k → 0. At the same time, Theorem 6.4 also sug-
gests that this stopping criterion may be unsuitable if the objective is highly nonlinear,
making clear the need for direct search methods, like all optimization algorithms, to
account for scaling.

Theorem 6.3 underlies the use of linearly constrained GSS methods in the aug-
mented Lagrangian framework given in [5]. The latter proceeds by successive ap-
proximate minimization of an augmented Lagrangian. The stopping criterion in the
subproblems involves the norm of the projection onto T (xk, ωk) of the negative gra-
dient of the augmented Lagrangian, for a parameter ωk ↓ 0. In the direct search
setting the gradient is unavailable. However, Theorem 6.3 enables us to use ∆k as an
alternative measure of stationarity in the subproblems. Details will appear in [16].

Acknowledgments. We thank Margaret Wright, the associate editor who han-
dled this paper, along with two anonymous referees, for the many useful comments
that led to a significant improvement in the presentation.

Appendix A. Criticality measure for first-order constrained stationar-
ity. Here we discuss χ(x) and ‖ q(x) ‖ in more detail. Because these measures are
not novel, we have relegated their discussion to an appendix.

For x ∈ Ω, progress toward a KKT point of (1.1) is measured by:

χ(x) ≡ max
x+w∈Ω
‖w ‖≤1

−∇f(x)T w. (A.1)

This measure was originally proposed in [5] and is discussed at length in Section 12.1.4
of [6], where the following properties are noted:

1. χ(x) is continuous,
2. χ(x) ≥ 0, and
3. χ(x) = 0 if and only if x is a KKT point for (1.1).

Showing that χ(xk) → 0 as k →∞ for a subsequence of iterates k constitutes a global
first-order stationarity result.
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Fig. A.1. How the w in (A.1) varies with −∇f(x) when x−∇f(x) 6∈ Ω .

To help better understand this measure, the w’s that define χ(x) in (A.1) are
illustrated in Figure A.1 for several choices of −∇f(x). Conn, Gould, and Toint
[6] observe that χ(x) can be interpreted as the progress that can be made on a
first-order model at x in a ball of radius unity with the constraint of preserving
feasibility. They go on to observe that χ(x) is a direct generalization of ‖∇f(x) ‖; in
fact, χ(x) = ‖∇f(x) ‖ whenever Ω = Rn or x−∇f(x) ∈ Ω.

The work in [19, 20] used the measure q(x) defined in (1.5) (this quantity appears
in [6] as equation (12.1.19)), but the resulting stationarity result is unsatisfying in the
case of general linear constraints. The quantity χ(x) turns out to be easier to work
with than q(x). The latter involves a projection onto the feasible polyhedron, and if
the constraints binding at the projection do not correspond to the constraints near x,
technical difficulties ensue in relating q(x) to the geometry of the feasible region near
x. This is not the case with χ(x).

Appendix B. Geometric results on cones and polyhedra. Here we present
geometrical results having to do with our use of χ(·) as a measure of stationarity.

The first proposition says that if one can move from x to x+v and remain feasible,
then v cannot be too outward-pointing with respect to the constraints near x. Recall
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from §2.1 that given a convex cone K and any vector v, there is a unique closest point
of K to v, the projection of v onto K, which we denote by vK . Thus vN(x,ε) is the
projection of v onto the ε-normal cone N(x, ε) while vT (x,ε) is the projection of v onto
the ε-tangent cone T (x, ε).

Proposition B.1. If x ∈ Ω and x + v ∈ Ω, then for any ε ≥ 0, ‖ vN(x,ε) ‖ ≤
ε/νmin, where νmin is the constant from (6.6).

Proof. Let N = N(x, ε). The result is immediate if vN = 0, so we need
only consider the case when vN 6= 0. Recall that N is generated by the outward-
pointing normals to the binding constraints within distance ε of x; thus, the set
A = { ai | i ∈ I(x, ε) } generates N . A simple calculation shows that the distance
from x to

{
y | aT

i y = bi

}
is (bi − aT

i x)/‖ ai ‖, so it follows that

bi − aT
i x

‖ ai ‖
≤ ε for all i ∈ I(x, ε).

Meanwhile, since x + v ∈ Ω, we have

aT
i x + aT

i v ≤ bi for all i.

The preceding two relations then lead to

aT
i v ≤ bi − aT

i x ≤ ε ‖ ai ‖ for all i ∈ I(x, ε).

Since N is generated by A ⊆ A = {a1, . . . , am} and vN 6= 0, by (2.1) and (6.6),

νmin ‖ vN ‖ ≤ max
i∈I(x,ε)

vT ai

‖ ai ‖
≤ max

i∈I(x,ε)

ε ‖ ai ‖
‖ ai ‖

= ε.

For x ∈ Ω and v ∈ Rn, define

χ̂(x; v) = max
x+w∈Ω
‖w ‖≤1

wT v. (B.1)

Note from (A.1) that χ(x) = χ̂(x;−∇f(x)). We use v in (B.1) to emphasize that the
following results are purely geometric facts about cones and polyhedra.

The following proposition relates χ̂(x; v) to the projection of v onto the cones
T (x, ε) and N(x, ε). Roughly speaking, it says that if ε > 0 is small, so that we are
only looking at a portion of the boundary very near x, then the projection of v onto
T (x, ε) (i.e., the portion of v pointing into the interior of the feasible region) cannot
be small unless χ̂(x; v) is also small.

Proposition B.2. If x ∈ Ω, then for all ε ≥ 0,

χ̂(x; v) ≤ ‖ vT (x,ε) ‖+
ε

νmin
‖ vN(x,ε) ‖,

where νmin is the constant from (6.6).
Proof. Let N = N(x, ε) and T = T (x, ε). Writing v in terms of its polar decom-

position, v = vN + vT , we obtain

χ̂(x; v) = max
x+w∈Ω
‖w ‖≤1

wT v ≤ max
x+w∈Ω
‖w ‖≤1

wT vT + max
x+w∈Ω
‖w ‖≤1

wT vN .

For the first term on the right-hand side we have

max
x+w∈Ω
‖w ‖≤1

wT vT ≤ ‖ vT ‖.
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Meanwhile, for any w we have

wT vN = (wT + wN )T vN ≤ wT
NvN

since wT
T vN ≤ 0. Thus,

max
x+w∈Ω
‖w ‖≤1

wT vN ≤ max
x+w∈Ω
‖w ‖≤1

‖wN ‖ ‖ vN ‖.

However, since x + w ∈ Ω, Proposition B.1 tells us that

‖wN ‖ ≤ ε

νmin
.

Therefore,

χ̂(x; v) ≤ ‖ vT ‖+
ε

νmin
‖ vN ‖.
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